
Simple optimizations speed array programs
on graphics processors

Bradford Larsen, Department of Computer Science, Tufts University

Efficient GPU code exploits
the memory hierarchy

The GPU interacts with a complicated memory hierarchy. On-
chip memory is quite small but can be accessed as quickly as
a register; the larger memories are much slower to access.

Fast GPU code will minimize overall memory traffic and will
favor the faster memory; this is where much time is spent when
optimizing CUDA code by hand.

Nested array expressions are
common and potential trouble
Deeply nested expressions are common:

rmse xs ys = sqrt (vsum diffs / len)
where
 diffs = vmap (^2) (vzipWith (-) xs ys)
 len = fromIntegral (vlength xs)

Naive compilation would use temporary vectors and would
iterate many times over the data.

Array fusion avoids trouble
Applying array indexing laws during code generation gives a
simple & dependable array fusion scheme:

(vmap f xs)!i = f (xs!i)
(vzipWith f xs ys)!i = f (xs!i) (ys!i)
(vslice (b, e) xs)!i = xs!(e - b + i)

The rmse function is compiled using no temporaries and only a
single pass over the data.

Barracudaʼs compiler uses fast
on-chip GPU memory
A CUDA kernel specifies sequential code to run in parallel by
hundreds of threads, each responsible for a single element of
the result array. When array expressions alias, array elements
will be read by multiple threads, e.g.:

Here elements b–g are read twice in the computation of as.

If read redundancy is known statically, the Barracuda compiler
generates code that exploits fast on-chip memory to avoid
repeatedly accessing slower memory.

Generated code is competitive
with handwritten code

0.75

0.85

0.95

1.05

2^8 2^12 2^16 2^20 2^24

Runtime relative to code from the CUDA SDK

Number of array elements

New and existing benchmarks were run to evaluate the
effectiveness of the optimizations. The test system had a 512
MB NVIDIA GeForce 8800 GT GPU and CUDA 3.2.

Surprisingly, Barracuda's generated SAXPY code is faster than
the cuBLAS implementation.

Array fusion is essential
for good performance

1E+02

1E+03

1E+04

2^8 2^12 2^16 2^20 2^24

RMSE average kernel runtime (µs)

Number of array elements

Array fusion is always performed by the Barracuda compiler;
the test kernel was manually unfused to measure the impact of
the simple fusion scheme.

In the root-mean-squared error benchmark, fusion results in a
2.9 times speedup on large inputs.

Using on-chip memory greatly
speeds up stencil computations

2

4

6

8

2^8 2^12 2^16 2^20 2^24

Speedup relative to non-optimized code

Number of array elements

Three stencil kernels were compiled with and without on-chip
memory optimization. Using on-chip memory gives dramatic
speedups—8× for the weighted moving average.

Speedups are enabled by careful
use of declarative programming!

Graphics processors are fast, but
difficult to program effectively
Modern graphics processors (GPUs) are extremely fast,
computing at over 1 TFLOPS, and are flexible enough to be
used for general-purpose computing.

CUDA is too low-level for easy GPU programming. For
example, array summation requires ~150 lines of parallel
CUDA code.

We use Barracuda, a prototype for an array-based language
that is compiled into optimized CUDA code.

Barracuda emphasizes collective array operations, which
describe how an array is transformed as a whole rather than
element-by-element in a loop.

Barracuda is applicative, or purely functional: programs have
no side effects, such as input, output, or assignment.

Array programs in Barracuda
are concise and implicitly parallel
Barracuda provides the following array operations:

Array programs are compiled
into optimized CUDA procedures

Root-mean squared error in Barracuda:
rmse :: VExp Float -> VExp Float -> SExp Float
rmse xs ys = sqrt (vsum diffs / len)
where diffs = vmap (^2) (vzipWith (-) xs ys)
 len = fromIntegral (vlength xs)

Generated CUDA procedure declaration:
void rmse(gpu_float_vec &xs, gpu_float_vec &ys,
 float &result);

This work was funded by the NASA Space Grant Graduate Fellowship and NSF grants OCI-0749125 and IIS-0082577.

SDOT
Black-Scholes

call options

SAXPY

slower

faster

1.7–2.9x faster1.1x faster
Manually
unfused

With fusion

Weighted moving
average

Forward
difference

Jacobi iteration

as = vzipWith (-) zs ys

ys = vslice (0, 6) xs

zs = vslice (1, 7) xs

a b c d e f g hxs

ys

zs

Hundreds
of cycles

Thousands
of cycles

3GB
Device
Memory

Main Memory

NVIDIA Tesla C2050

48 KB
On-chip
Memory

32 GPU
Cores

One
cycle

×14 chips

Barracuda functions

Barracuda runtime,
C++ application codeCUDA, C++ wrapper code

General-purpose GPU program

Barracuda compiler

CUDA compiler

a b c d f(c)f(a) f(b) f(d)

a b c d z ⊕ a ⊕ b ⊕ c ⊕ d

vmap f xs

vreduce ⊕ z xs

a b c d

vslice (1, 2) xs

b c

f(c, cʼ)f(a, aʼ) f(b, bʼ) f(d, dʼ)

vzipWith f xs ys

a b c d

a’ b’ c’ d’

(element-wise transformation)

(reduction to scalar)

(sub-vector extraction)

(element-wise transformation)

These primitives have efficient GPU implementations.

