
A DSM PROTOCOL AWARE OF BOTH THREAD MIGRATION AND
MEMORY CONSTRAINTS

Ronald Veldema1, Bradford Larsen2, Michael Philippsen1
1University of Erlangen-Nuremberg, Computer Science Department,

Programming Systems Group, Martensstr. 3, 91058 Erlangen,Germany
2University of New Hampshire, Computer Science Department

email:{veldema, philippsen}@cs.fau.de, brad.larsen@gmail.com

ABSTRACT
A DSM protocol ensures that a thread can access data allo-
cated on another machine using some consistency protocol.
The consistency protocol can either replicate the data and
unify replica changes periodically or the thread, upon re-
mote access, can migrate to the machine that hosts the data
and access the data there. There is a performance trade-
off between these extremes. Data replication suffers from
a high memory overhead as every replicated object or page
consumes memory on each machine. On the other hand, it
is as bad to migrate threads upon each remote access since
repeated accesses to the same distributed data set will cause
repeated network communication whereas replication will
incur this only once (at the cost of increased administration
overhead to manage the replicas).

We propose a hybrid protocol that uses selective repli-
cation with thread migration as its default. Even in the pres-
ence of extreme memory pressure and thread-migrations,
our protocol reaches or exceeds the performance that can
be achieved by means of manual replication and explicit
changes of the application’s code.

KEY WORDS
DSM, protocol, virtual machine.

1 Introduction

There are many problems that require a large memory,
larger than a single machine’s core memory or even a whole
cluster’s combined core memories. To name some exam-
ples: combinatorial search problems, problems that use
large graphs, particle simulations with large numbers of
particles, etc.

The DSM protocol presented heresolely addresses
these classes of problem sizes where swapping isalways
needed. It is implemented as an extension of LVM [8],
a virtual machine for Java that adds a distributed shared
memory. LVM supports these large problem sizes effi-
ciently by implementing its own swapping of objects to
disk instead of relying on the operating system. In a cluster
context, each machine adds its memory and disk space to
the available global memory. Thread migration is used to
access remote objects. However, to avoid excessive thread
migration selective object replication is needed. This pa-

per presents such a protocol that limits object replicationto
curb both memory usage and the amount of thread migra-
tion required.

We use thread migration by default for two rea-
sons. First, all DSM protocols that fetch data for their
operation—whether using lazy-, release-, entry-, or scope-
consistency protocols—requirecopies of data for calculat-
ing local changes. In effect this at least halves available ap-
plication memory. Second, we cannot afford to fetch huge
numbers of objects locally.

Contributions in this paper are: how to allow both
replication and thread migration in the same protocol effi-
ciently, how to limit replication to a fixed pool of memory,
and a simple heuristics to decide which objects to replicate.
Note that no other DSM protocol that we know of fully ad-
dresses the problem of maintaining memory consistency of
shared data under thread migration.

2 Related Work

Most DSMs (including the ones mentioned here) assume
that applications completely fit into memory and that suf-
ficient memory is available to keep two or more copies of
all data. Our protocol only replicates a small part of the
data. No other system performs our lazy diff-pulling on
thread migration or limits the amount of memory available
for replication.

Some page-based DSM systems, e.g. the Coherent
Virtual machine (CVM) [7] and Millipede [4], can improve
performance by selectively applying thread migration. In
general, if a given page is written often enough, thread mi-
gration is applied (where we do thread migration by default
and replicate objects with a lazy self-consistency protocol).
Unlike with LVM, with Treadmarks/CVM/Millipede, the
available memory does not grow when machines are added.

CRL [5] is a DSM library (for C) that provides
an API for wrapping regions of memory to shared-
objects (start-read/write(X), end-read/write(X)). Upon
start-read/write(X), the region X is mapped locally.
MCRL [3] extends CRL with thread migration. A start-
write(X) now causes migration of the current activation
record to the machine that hosts X. Under some heuristics,
some reads cause computation migration as well. Overall,
we differ from MCRL’s protocols in various ways: we per-

form thread migration by default and only optionally repli-
cate. Also, we use an update protocol rather than a caching
protocol. Neither CRL nor MCRL are memory-aware and
both are implemented as libraries where we use a VM ap-
proach that is transparent to the programmer.

Jessica2 [10] is a JVM that allows both data caching
and thread migration. Data caching is used for remote ob-
ject access. A migration policy allows the home of an ob-
ject (i.e. where its meta-data is maintained) to change. The
decision is based on a comparison of machine access ra-
tios. Thread migration is used here to allow a program-
mer to implement application level load-balancing where
we use thread migration to manage remote access and use
data replication to reduce communication load. Also, Jes-
sica2 is not memory-aware, whereas LVM is.

An overview of DSM systems can be found in [6]. We
will focus on out-of-core combined with DSM.

LOTS [2] is closest to LVM. It is also a DSM that can
swap out objects to disk. However, its mechanisms are very
different. Furthermore, LOTS can only use a third of the
available memory/disk space for storing objects (due to its
traditional DSM that requires diffs/twins) so that no large
numbers of objects can be used. Also, LVM uses thread
migration and has no per-object DSM overheads except
for objects replicated with the memory bounded replica-
tion facility introduced in this paper, which is specifically
designed to use only a fixed, small amount of memory. Fi-
nally, LOTS requires manually inserted acquire and release
statements to control data consistency and to use the C++
library constructs provided. All of this is generated by the
compiler in our approach.

3 LVM

The effectiveness of our previous LVM prototype is shown
in [8]. That prototype relied solely on thread migration for
remote object access. I.e., whenever a remote object is ac-
cessed, the remote reference is examined to see which ma-
chine owns the remote object and the thread is sent to that
machine to access the object locally.

Each cluster node’s local address space is divided into
1 MB segments. In an object reference, we encode the ma-
chine number, the segment number, and the offset within
the segment as shown in Fig. 1.

Machine Segment Obj−ID Frag−ID Flags
8 bits 24 bits 16 bits 8 bits 8 bits

Figure 1. Reference layout.

Because references are not direct memory addresses
they must be decoded: Before each reference usage there is
a call torefToObjectPtrthat, given a reference, returns the
memory address in the local machine. There is of course a
compiler pass that eliminates superfluous repeated calls to
refToObjectPtrwithin basic blocks.

javaObject* refToObjectPtr(objectreferencet ref) {
if (is remote(ref)){

if is locally replicated(ref)) ref = get replica(ref);
else migratethread(ref, get machine(ref)); }

Segment*s = locatesegment(ref.segnumber);
javaObject *q = s->data + (32 * getsegindex(ref));
return q; }

Segment* locatesegment(int index){
Segment *s = &segarr[index];
...swap-in-if-needed(s);
...swap-out-some-olds-if-needed();
return s;}

Segment segarr[MAX SEGMENTSPERMACHINE];

Figure 2. Decoding a reference to an object.

The cost forrefToObjectPtr(Fig. 2) is non-trivial,
but not extreme. The important part is the call to
is locally replicated(ref)which ensures replica use. If no
local replica is available, thread migration is performed.
Except for this new line, the code is the same as that of [8]
and needs not be understood further.

4 Replication Protocol

If an object causes excessive migration and the read-to-
write-ratio is high, higher application performance and bet-
ter load balance can be achieved by replication. Our repli-
cation protocol is correct with respect to the Java Mem-
ory Model (JMM) in that we guarantee JMM semantics
for properly synchronized programs but not for incorrectly
synchronized programs.

Our replication protocol is aware of memory con-
straints and is able to perform well with thread migration.
The protocol limits the maximal amount of memory that
is used for replicated objects, which are managed under
an update protocol—changes to an object are synchronized
with the copies of that object. Of course replication con-
sumes memory for replicas and twins, that are necessary
for later calculating what changes have been made. But by
only allowing a limited amount of memory for replication,
this concern is greatly alleviated.

To enable use of the replication protocol the
forceReplicatelibrary function must be invoked on an ob-
ject. In response the protocol then replicates the object on
all machines. This method can either be inserted into the
program by the programmer, or it is automatically called by
our replication heuristics (Section 4.3). If a machine does
not have enough memory left for replication purposes, a
machine can deny a replication request. The cluster node
that owns the object keeps track of which other nodes have
successfully created a replica of that object.

To implement replication, each LVM instance main-
tains a hash table of references to object/replica pairs (diffs
are thus per object). As shown in Fig 2, every time a remote
reference is accessed,refToObjectPtrsearches the hash for

a local replica. If none is foundmigrate threadis called.
For performance reasons and to allow the program-

mer a modicum of control over the replication protocol,
replicability must be annotated to a class type explicitly:

//#pragma replicable
classData{

int value;
Data(){ RuntimeSystem.forceReplicate(this);}

}

We only generate the call tois locally replicated(ref)in
refToObjectPtrfor such annotated types. This increases
performance of non-replicated object access as it avoids a
useless hash lookup and results in smaller code. Because
Java array types cannot be given names (cf. typedef in C),
a use-case distinction of different arrays is hard. All array
types are therefore implicitly replicable. The general rule
for adding the replication annotation is to do so only for
objects that are relatively seldom allocated.

To allow polymorphism for annotations, we use static
type analysis in cooperation with two replication pragma
usage rules. First, for any type X marked replicable, all
sub-classes of X are automatically replicable. Second, only
classes that directly inherit from java.lang.Object can be
marked replicable.

4.1 Replication Protocol Implementation

The replication protocol must interact with three pre-
existing subsystems: the thread migrator, the synchroniza-
tion subsystem, and the garbage collector. We discuss these
in turn.

Replication must interact with thread migration be-
cause to implement the semantics of the Java memory
model, changes to objects need to be made available to
the modifying thread after its own migration. Consider a
scenario where a thread changes replicated object P on ma-
chine 0, then migrates to machine 1 where it accesses a
object Q. If it then again uses P but this time on machine 1,
the thread should see the change that it made earlier when
is was still running on machine 0.

To implement this, we could require that threads ea-
gerly pull their changes to replicated objects upon migra-
tion. Since this would transmit the full pool of replicated
objects on each thread migration, we instead pull these
changes lazily. Each thread maintains a table of object ref-
erence/node number pairs, where the node number is that
of the machine that holds the most recent copy of the ob-
ject. When a thread accesses an object that it has previ-
ously modified at a different machine, it pulls the diff from
the node with the most recent copy, applies the diff locally,
and updates the table to indicate that the current machine
now has the most recent copy. This is illustrated in Fig. 3.
We see LVM running on two cluster nodes. Machine 0 has
the original of objectA and machine 1 has a replica. Since
thread 0 has modifiedA (1), the originalA is out-of-date.
When thread 0 modifies the replica ofA, it adds the en-
try {Reference of A, 1} to its local changes table. Next,

thread 0 migrates to machine 0 (2). There it references
A (3). Because there is a local version ofA, migration is
unnecessary. Instead, the thread consults its migrated lo-
cal changes table, finds the{Reference of A, 1} entry, and
pulls the changes from machine 1 (4). Once the changes
have been applied to the local copy, which in this case is
A’s original version, thread 0 can finally accessA (5).

Replication also affects the synchronization protocol
as the latter is tightly coupled to Java’s memory model.
Multiple copies of an object must be kept in sync. Our so-
lution is to let a thread publish its changes whenever it exe-
cutes a monitor operation, i.e. uponlock, unlock, wait, no-
tify, notifyAll. Upon any of these operations, the executing
thread flushes its local changes table, causing all copies of
that object to be synchronized. Forproperly synchronized
programs, these updates are atomic since shared variable
accessrequireslock/unlock for mutual exclusion from the
programmer.

To save space we cannot go through the protocol line-
by-line, instead we discuss it globally: for each entry in
the thread’s local changes table, the thread tells the ma-
chine with the most recent version to send its changes to
the object’s owner. The object’s owner applies the diff to
the original and forwards the diff to every other machine
with a replica of that object. Each replicator next applies
the diffs to its local copies. Since at this point, all copies
of the object have an identical state, the object’s owner can
tell the initiating machine that synchronization is complete.

Finally, to free unused replicas and twins, the replica-
tion mechanism must also interface with the garbage col-
lector. The logic is straightforward: replicas can be col-
lected, whenever the ’original’ is collected. Thus, when-
ever, the ’original’ is marked, we send messages to mark
its replicas to also keep them alive. During the GC sweep
phase, unmarked replicas/twins/objects are disposed of.

4.2 Volatile Variables

If in Java a field is marked ’volatile’, it is guaranteed that
first, no other access is reordered over the volatile access
and that, second, the cache is flushed after the manipulation
of the volatile field. We implement the first requirement
in the compiler by tagging instructions in our intermedi-
ate language as ’volatile’. This causes the instruction to be
treated the same as calls tolockandunlock. The second re-
quirement is ensured by letting the compiler generate a call
to Thread::flush(). Hence, a volatile access has the same
(protocol-level) effect aslock or unlock.

4.3 Automatic Replication

Intuitively, replication of an object is a good idea if the
number of reads is high and the number of modifications
is low. However, it can be hard for the programmer to cor-
rectly detect objects with such a favorable read-write ratio
and to insertforceReplicationcalls to the appropriate ob-
jects. We therefore provide a simple heuristics that auto-

Figure 3. Lazily pulling thread-local changes.

matically callsforceReplicationonce an object has caused
a threshold number of thread migrations of a suitable read-
/write ratio (each thread migration is caused by either read-
ing or writing a field). However, we still require poten-
tially replicable objects to be markedreplicable so that
for most objects, the costly replica hash-lookup can be
avoided. Currently, we require a 4:1 read to write ratio with
at least a hundred migrations caused by a read.

This simple heuristic may fail in several cases. First,
to keep memory consumption low, the hash table needs to
be fixed to a small size. Otherwise, if every Java reference
that causes replication would be recorded the hash would
grow huge (especially given LVM’s goal of a large object-
space). The small size causes us to overwrite hash entries in
case of key collisions. A too high number of key collisions
can effectively disable replication.

The second problem is caused by an increment of a
wrong counter. Consider a read-caused migration followed
by a write access. At the target machine, the thread im-
mediately after arrival modifies another object that lives on
the target machine. Since the read counter is incremented
but the write counter is not, the replication engine might
incorrectly assume that replication is a good idea. Here is
a (simple) example:tmp = obj1.field; tmp = tmp + 1;
obj1.field = tmp; When execution migrates to the machine
that holds ’obj1’, the counters will record this migration to
be caused by a read. The counters will ignore the subse-
quent (local) write operation. There are many variations on
this theme.

Finally, the heuristics do not monitor the frequency of
synchronization actions nor their costs. If synchronization
is needed frequently, fewer objects should be replicated.
Also, larger objects should be replicated less aggressively
for the same reason. Ideally, the observed frequency should
be dynamically/adaptively applied to the read/write heuris-
tic we already use. Such heuristics are however delicate.

The programmer can combat these effects in two
ways. First, one can disable automatic replication if the

heuristics turn out to be too simplistic, or second, one
can experiment with different applications of thereplica-
blepragma.

5 Benchmarks

Our cluster nodes are quad-core Xeon “Woodcrest” proces-
sors running at 3.0 GHz with 4 MB Shared Level 2 Cache
per dual core and 8 GB of RAM. Although the machines
have 8 GB RAM, we restrict LVM to 1.7 GB to artificially
increase memory presure. The Infiniband interconnect can
communicate with 10 GBit/s bandwidth per link and di-
rection. LVM, internally uses MPI for communications.
We use Intel MPI 3.1.038 over Infiniband for our measure-
ments. Standard JVM measurements are performed on a
standalone machine equipped with only 2 GB of physical
RAM. This ensures that LVM and JDK run with the same
memory presures. We use Sun JDK 1.6 with standard op-
tions which is referred to as “JDK” below.

For each of our three applications we consider four
versions. Inno-repl we have no replication at all. In
manual-repl we did not use replication annotations but
instead for each object that needs replication, we allocate
a per-thread copy manually by changing the application
codes. Third,force-repl uses the no-repl code versions
but addsforceReplicationand thereplicablepragma. Fi-
nally, auto-repl adds thereplicablepragma only and lets
the auto-replication heuristics select objects to replicate.
All times reported are in seconds and are wall times, the
mean numbers show the per-machine numbers. We do not
compare against raw MPI implementations of these bench-
marks for two reasons: the parallelism and programming
models are different, and they would rely on the operating
system’s swapping mechanism.
Ocean.Ocean is a Java port of the corresponding Splash2
code [9]. Ocean studies large scale water movements in an
ocean based on eddy and boundary water currents. It is im-
plemented using a red-black Gaus-Seidel multigrid equa-

Table 1. Ocean results.

Mean Thread Migration Count

Machines 1 2 4 8

manual-repl n/a 1939 33952 28529
force-repl n/a 2473 62423 30466
auto-repl n/a 2666 36906 23081

Mean Max Heap Size (MB)

Machines 1 2 4 8

manual-repl 4087 2831 1278 655
force-repl 4087 2040 1174 562
auto-repl 4087 2040 1174 671

Wall Time (seconds)

Machines 1 2 4 8

manual-repl 3172 1390 688 345
force-repl 3336 1403 695 358
auto-repl 3423 1388 683 339
JDK 64041 n/a n/a n/a

tion solver [1].
Ocean’s main data-structure are a number of 4D ar-

rays of doubles. Only the outer arrays are modified, the in-
ner dimensions are ideal for replication. This is especially
suited as the outer dimension(s) will occupy most memory.
The relevant statistics are shown in Table 1. Unfortunately,
the no-repl version is so slow that it does not run under the
time limits imposed by our cluster’s fair use policies.

For all versions, we can see that speedup is good.
Ocean’s auto-repl version wins over the manual-repl ver-
sion (for 2 or more machines) because its hard to find and
copy the correct data structures in the manual-repl version.
In the force-repl version we replicated any replicable ob-
ject. Over those objects, the auto-repl version replicated
some objects that were hard to find manually. Both auto-
repl and force-repl we gave 256 MB of replication memory,
which is small relative to the heap size. The heap size for
manual-repl is slightly larger as it replicates some objects
unnecessarily (see two machine case).
JCheck. JCheck is a model checker for programs written
in a Java dialect. Starting from some initial state, it triesall
possible thread interleavings (the state-space) to find reach-
able error states. Each state consists of at least 14 objects
including a large array.

Each machine stores a copy of the hash table of states
already tried to avoid duplicate parallel searches. These
duplicated hash tables cause (application level) loss of par-
allelism as each machine’s hash needs to be kept reason-
ably in sync with the other’s. In JCheck it pays to repli-
cate the often-accessed, read-only control structures. Also,
to reduce the number of thread migrations, all versions of
JCheck heavily use the optimizedarraycopy, treeCopy, and
treeEqualsmethods (see [8]). The results are given in Ta-
ble 2.

Table 2. JCheck Results.

Mean Thread Migration Count

Machines 1 2 4 8

no-repl n/a 962109 631524 513232
manual-repl n/a 44234 91266 38582
force-repl n/a 30865 40773 169388
auto-repl n/a 32408 30869 66202

Mean Max Heap Size (MB)

Machines 1 2 4 8

no-repl 10442 4962 4895 2592
manual-repl 10455 7654 3963 2828
force-repl 10443 5270 5932 3276
auto-repl 10442 4926 4895 2592

Wall Time (seconds)

Machines 1 2 4 8

no-repl 2498 2808 1934 1406
manual-repl 2297 938 404 996
force-repl 2866 1072 1787 370
auto-repl 2760 927 976 208
JDK 37515 n/a n/a n/a

Where manual-repl takes under an hour (2297s) on
one machine, JDK (using OS-swapping) takes over 10
hours (37515s) on that machine. For either VM, time
is mostly dominated by swapping. The overhead of do-
ing the replica-lookup per object access can be clearly
seen in JCheck: manual-repl has no lookups where force-
repl/auto-repl do. This causes the difference of 2297s vs.
2866s using only one machine. With 8 machines, search
space pruning becomes hard as threads can’t synchronize
their hash tables fast enough. This causes the slow down of
manual-repl when going from 4 to 8 machines.

The force-repl and auto-repl versions win over
manual-repl in JCheck because with manual-repl object
equality of two replicated objects must be implemented by
comparing object contents. Instead, with force/auto-repla
reference comparison of replicas suffices. The overall win-
ner is auto-repl with 208s on 8 machines. Even though
our replication heuristics is very simple, it is competitive
compared to force-repl and manual-repl by being more ag-
gressive in replication. Note that the force/auto-repl ver-
sions required far fewer code changes than the manual-repl
version and that we only allow 1 MB of memory for repli-
cation in JCheck.
Griso. The Griso Subgraph Locator finds occurrences of a
(sub) graph P in a (super) graph K. Due to potentially ro-
tated nodes/edges this requires costly graph isomorphism
tests. Memory consumption is large since all canonical
forms of the permutations of P need to be stored. Fortu-
nately, the memory consumption scales with the number of
available machines. The results are shown in Table 3.

JDK performance (389629s) suffers from the semi-
random memory accesses that do not affect LVM as its al-

Table 3. Griso Results.

Mean Thread Migration Count (×1000)

Machines 1 2 4 8

no-repl n/a 34644 25242 12366
manual-repl n/a 83 294 506
force-repl n/a 9 19 15
auto-repl n/a 96 6480 295

Mean Max Heap Size (MB)

Machines 1 2 4 8

no-repl 7413 3715 1864 932
manual-repl 7384 3700 1856 934
force-repl 7384 3700 1856 934
auto-repl 7384 3697 1854 930

Wall Time (seconds)

Machines 1 2 4 8

no-repl 10121 176400 54600 21180
manual-repl 10121 2427 847 406
force-repl 9760 2963 745 764
auto-repl 11637 4896 3608 797
JDK 389629 n/a n/a n/a

location regime automatically puts related nodes/edges on
the same segment.

The results clearly show that some version of replica-
tion is absolutely necessary. Although our thread migration
is fast, performing billions of migrations is deadly. We al-
low the protocol maximally 256 MB of memory

Note that with few machines, the speed in which the
auto-repl version ’learns’ which things to replicate (the
nodes and edges of the super graph) is slow, which is seen
in the high thread migration counts. Only when using 4 –
8 machines sufficient data is gathered for the heuristic to
work. Heap usage for all protocol versions are about the
same. Manual-repl wins with respect to speedup because it
has no administrative data to maintain per replica.

6 Conclusions

We have described a DSM protocol that by default uses
thread migration and applies selective object replicationto
remove excessive thread migrations. A surprising result is
that with only little memory set aside for replication (1MB
for JCheck, 256 MB for Ocean and Griso), the number
of thread migrations already shrinks to reasonable levels.
Both automatic and forced replication also nicely alleviate
the programmer from the task of manual replica manage-
ment. A simple heuristics to decide what to replicate by
counting how many migrations were caused by read and
write accesses has shown to be very effective. It is either
more aggressive in how soon to replicate or it finds ob-
jects that benefit from replication and that the programmer
has overlooked. By annotating which types are candidates

for replication, replica statistics management is easier (and
therefore the heuristics can be too). Overall, the heap sizes
are about the same.

References

[1] Achi Brandt. Multi-Level Adaptive Solutions
to Boundary-Value Problems. Math. Comp.,
31(138):333–390, April 1977.

[2] B.W.L. Cheun, C.L. Wang, and F.C.M. Lau. LOTS:
A Software DSM Supporting Large Object Space. In
Proc. Cluster 2004, pages 225–234, San Diego, CA,
Sep. 2004.

[3] W.C-Yi Hsieh, M.F. Kaashoek, and W.E. Weihl. Dy-
namic Computation Migration in DSM Systems. In
Proc. of Supercomputing ’96, pages 44–54, Nov.
1996.

[4] A. Itzkovitz and A. Schuster. MultiView and Milli-
page - Fine-Grain Sharing in Page-Based DSMs. In
Proc. of the 5th USENIX Symp. on Operating Systems
Design and Implementation (OSDI ’99), pages 215–
228, New Orleans, LA, Feb. 1999.

[5] K.L. Johnson, M.F. Kaashoek, and D.A. Wallach.
CRL: High-Performance All-Software Distributed
Shared Memory. InProc. of the 15th ACM Symp. on
Operating Systems Principles, pages 213–226, Cop-
per Mountain, CO, Dec. 1995.

[6] J. Protic, M. Tomasevic, and V. Milutinovic. A survey
of distributed shared memory systems. InProc. 28th
Hawaii Intl. Conf. on System Sciences (HICSS’95),
pages 74–84, Jan. 1995.

[7] Kritchalach Thitikamol and Pete Keleher. Thread
migration and communication minimization in DSM
systems. Proc. of the IEEE, Special Issue on Dis-
tributed Shared Memory Systems, 87(3):487–497,
March 1999.

[8] Ronald Veldema and Michael Philippsen. Supporting
Huge Address Spaces in a Virtual Machine for Java
on a Cluster. InLanguages and Compilers for Paral-
lel Computing (LCPC) 2007, Urbana, IL, Oct. 2007.

[9] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and
A. Gupta. The SPLASH-2 Programs: Characteriza-
tion and Methodological Considerations. InProc.
22nd Intl. Symp. on Computer Architecture, pages
24–36, Santa Margherita Ligure, Italy, June 1995.

[10] W. Zhu, W. Fang, C.L. Wang, and F.C.M. Lau. A
New Transparent Java Thread Migration System Us-
ing Just-in-Time Recompilation. InThe 16th IASTED
Intl. Conf. on Parallel and Distributed Computing and
Systems (PDCS 2004), pages 766–771, MIT Cam-
bridge, MA, Nov. 2004.

